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Abstract 

A kinematical model is proposed to describe X-ray 
interference phenomena in the symmetric Bragg case 
from multilamina structures. The formalism is able to 
represent any desired sequence of crystalline and non- 
diffracting layers and hence can be used for a va- 
riety of experimental situations from heterostructures 
to implanted single crystals with embedded amorphous 
layers. Owing to the relevant thicknesses involved in the 
implant, the analysis of the interference effects by this 
model is not restricted to the case of very thin embedded 
layers commonly encountered in heterostructure-based 
optoelectronic devices. The model is hence of more gen- 
eral validity. Comparison with rocking curves obtained 
by dynamical treatment of experimental data, relative 
to silicon implanted in such conditions as to produce 
buried amorphous layers, shows that all the interference 
features are well reproduced by the model. 

1. Introduction 

Bragg-case X-ray interference phenomena accompany- 
ing diffraction from multilayered heterostructures are 
receiving particular attention owing to the interest of 
these materials in electronic and optoelectronic device 
manufacturing. The relevance of these studies resides in 
the determination of lattice strain, mismatch, composi- 
tion, degree of relaxation and thickness of the layers 
with high accuracy. Among the various layer struc- 
tures producing such interference effects, quantum wells, 
lasers and high-electron-mobility transistors were inves- 
tigated in the recent past (see e.g. Tapfer & Ploog, 
1989; Wie, Chen, Kim, Liu, Choi & Hwang, 1989; 
Holloway, 1990; Tanner, 1993), mainly to correlate the 
modulations in X-ray diffraction curves to the structural 
properties of the constituent layers, also as thin as 
one monolayer. However, other sandwich structures, 
obtained for instance by ion implantation, are relevant 
from the technological point of view and deserve the 
same degree of attention. In the last few years, silicon- 
on-insulator (SOI) structures have been fabricated by 
separation by implanted oxygen (SIMOX) and suitable 
high-temperature thermal cycles (Jaussaud, Stoemenos, 
Margail, Papon & Bruel, 1991; Margail, Lamure & 
Papon, 1992; Nikulin, Snigirev, Starkov, Hemment & 
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Vyatkin, 1992). These structures include buried amor- 
phous silicon oxide layers and then produce well defined 
interference effects when rocked around their Bragg 
peak, provided that the crystal quality of the cladding 
layers is sufficiently perfect. Hence, the analysis of the 
interference patterns enables the assessment of layer 
perfection in SO1 structures. 

The difficulty in obtaining SOI structures of good 
lattice regularity by SIMOX made us limit our interest to 
the analysis of Bragg-case X-ray interference phenom- 
ena occurring between crystalline regions separated by 
non-diffracting (amorphous) material as produced in as- 
implanted silicon crystals. In this paper, a kinematical 
description is proposed for such an analysis. Owing to 
the relevant surface layer thicknesses involved in the 
implant, this description will necessarily be somewhat 
different from those reported by Holloway (1990) and 
Tapfer & Ploog (1989). In fact, in these papers, Bragg- 
case interference effects were studied from structures 
including such thin crystalline layers that diffraction 
from them could be neglected and some approximations 
in the kinematical treatment are allowed. However, 
in our case of thicker non-diffracting layers, certain 
approximations have to be removed. The formalism 
presented here will then be of more general validity. Cal- 
culations obtained by these kinematical expressions will 
be compared with experimental data for ion-implanted 
silicon resulting from analysis with a dynamical model. 

2. Kinematical approximation 

2.1. Perfect crystal 
Resorting to the kinematical approximation, which 

enables an easy analytical description of the diffraction 
phenomenon, has already been used not only in the case 
of multilayered heterostructures (Tapfer & Ploog, 1989; 
Wie, 1989; Holloway, 1990; Wie & Kim, 1991) but 
also in diffused and ion-implanted crystals (Afanas'ev, 
Koval'chuk, Kovev & Kohn, 1977; Speriosu, 1981). The 
main interest in this description relies on the possibility 
of clarifying the relative importance of the different 
structural parameters responsible for the complicated 
interference pattern experimentally observed in multi- 
layered materials. The use of this single-scattering ap- 
proximation is allowed if the sample thickness is con- 
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siderably smaller than the X-ray extinction length. Only 
in this case are dynamical and kinematical calculations 
equivalent. In what follows, we will apply the kinemat- 
ical approximation in the Bragg case to the analysis 
of double-crystal X-ray rocking curves (RCs) result- 
ing from implanted samples containing an embedded 
amorphous layer. In this case, reflectivity modulations 
are expected as a result o f  the interference of the two 
crystalline regions separated by the non-diffracting layer. 
It is worth noting that this situation is very similar to that 
observed in the case of multilayered heterostructures, 
where the Bragg peak of a thin separating layer is far 
away from the ones of the interfering regions. 

Our starting point is the optical approach to the 
kinematical theory (James, 1967). In this context, the 
reflectivity of a crystal slab consisting of p parallel 
planes with spacing d is obtained by considering the 
interference among p reflected waves whose amplitude 
q (complex for an absorbing crystal) is given by the Dar- 
win amplitude scattered by each plane and with phase 
differences between waves scattered by two successive 
planes given by b = (47r/A)d sin(0). For a or-polarized 
incident wave and neglecting refraction, this reflectivity 
is given by 

e(o)  -- [ql2sin2(pO/2)/sin2(b/2), (1) 

where q - -[Ad/(VsinO)]Fre,  A is the X-ray wave- 
length, V the unit-cell volume, 0 the incidence angle, F 
the structure factor and re the classical electron radius. 
The right-hand side of (1) is essentially an interference 
function. This can be made even more evident with the 
following rearrangement of (1). Let us consider a perfect 
crystal with p parallel reflecting planes composed of 
two layers consisting of Pl and P2 planes, respectively, 
as schematically shown in Fig. l(a). By inserting p = 
Pl + P2 in (1), after some handling we get 

R(O) = RI(O)+R2(O)+2[R,(O)R2(O)] 1/2 cos[a(0)], (2) 

where 

R1,2(0) --Iq[ 2 sin2(pl,26/2)/sin2(¢5/2) (3) 

and 
Ol(0) - -  (471/A)[(p  I + P2)d/2] s in (P) .  (4) 

Equation (2) has the form of a two-beam interference 
expression with intensity ratios R1 and R2 and phase 
difference a dependent on 0. The interference pattern 
will then consist of the fringes due to the terms of (3) 
and to cosinusoidal interference fringes modulated by 
the term 2[R,(O)R2(O)] 1/2. 

Therefore, in this framework, the crystal behaves 
just like an amplitude splitting interferometer and the 
interference pattern given by (1) or (2) can be thought 

of as due to two virtual coherent sources, $1 and $2, 
as shown in Fig. l(c). In fact, with reference to this 
figure, the path difference between the normals to the 
wavefronts emitted by $1 and $2, neglecting beam de- 
viations due to the different refractive indices in the 
crystal and in vacuum, is given by S2H -- 2AIA2 sin(P), 
where A~A2 = (Pl + p2)d/2 corresponds to the distance 
between the mid-points, A j and A2, of the two layers 
composing the crystal. This results in a phase difference 
r~(O) = (27r/A)S2H, as given in (4). 

The interest in this description is because it can be 
straightforwardly extended to the case of an embedded 
non-retlecting layer. In fact, let us take the two layers at 
a distance t apart, as shown in Fig. l(b), and consider 
the optical analogue of the X-ray diffraction in Fig. 
l(d). By comparing Figs. l(c) and (d), it is seen that 
the only difference from the previous case is the value 
of the distance AIA2, which is given here by AIA2 -- 
(Pl + p2)d/2 + t. Therefore, the reflectivity will still 
be given by (2), where now a(O) will be given by the 
expression 

(~(0)  = (47r/A)AIA2 sin(P) 

= (4¢r/A)[Co, + P2)d/2 + t] sin(P). (5) 

This approach evidences the dependence of a(0) on the 
thickness t of the non-diffracting layer. This dependence 
can be described as follows. From (5), when the con- 
dition (47r/A)tsin(O) = 27rn is satisfied for a given 
incidence angle, the reflectivity R(O) at this angle will 
equal that in the absence of the non-diffracting layer, 
i.e. R(O) will be the same as that resulting from (2) with 
~(0) given by (4). Thus, at a given incidence angle 8, 
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Fig. 1. Sketch of kinematical diffraction from a two-layer structure 
composed of Pl = P2 d-spaced lattice planes without (a and c) 
and with (b and d) non-diffracting separator layer of thickness t. 
S, $1 and $2 represent the actual and the virtual X-ray sources, 
respectively. 0 is the incidence angle and A~ and A2 are the mid- 
points of the crystalline layer thickness. 
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the reflectivity will repeat for values of t that satisfy the 
previous condition, i.e. for 

t=  n(d/m)[sin(Os)/sin(O)], (6) 

where m is the reflection order in the Bragg law and 
0B is the Bragg angle. For example, at 0 - 0B, the 
reflectivity value of the crystal composed of P l + P2 
planes will cycle with a period equal to d/m. However, 
the t values that satisfy (6) will decrease or increase 
on increasing the deviation of the incidence angle from 
the Bragg condition. Hence, strictly speaking, the whole 
RC does not cycle for a typical value of t, even in 
the case where t equals an integer number of d/m. 
This is shown in Fig. 2, where the 004 RCs relative 
to a three-layer silicon structure composed by two outer 
crystalline layers of equal thickness, pld = p2 d = 920d, 
are reported for values of the thickness t of the non- 
diffracting material ranging from zero to 920d. The 
calculations refer to non-absorbing layers and hence with 
q as a real quantity. In Fig. 2, starting from the 004 RC 

of the perfect crystal of (p~ +p2)d planes (Fig. 2a), two 
main effects are observed on increasing the thickness 
t of the separator layer (Figs. 2b-h). The first one, for 
t very small compared with the thickness of the outer 
crystalline layers (Figs. 2b and c), is the appearance 
of fringes with a spacing that is inversely proportional 
to the total thickness of the new diffracting structure. 
These fringes are marked on the right-hand side of 
the RCs in Figs. 2(b) and (c). On further increasing 
the thickness of the separator, the second effect begins 
to appear as a modulation of the interference fringes. 
This is observed, in the examined angular range of 
the present example, starting from Fig. 2(d), i.e. from 
t = 64d. This modulation defines maxima whose spacing 
is inversely proportional to the thickness of the separator 
layer. They are marked on the right-hand side of the 
RCs in Figs. 2(d)-(h). In Figs. 2(b) and (e)-(h), half- 
spaced modulation maxima are also visible. It is easy to 
show, by re-expressing (2) and (5) as a function of the 
total structure thickness and the separator thickness, that 
maxima with a spacing inversely proportional to twice 
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Fig. 2. Interference patterns corresponding to the structure of Fig. 1 for different separator thicknesses t = n d  (in-phase condition). The 
insets are enlarged views of the central spectrum regions from -100  to 100 rr starting from the reflectivity value of 10 -4. d 0  is the 
deviation from the Bragg angle. 
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these thicknesses have also to be present. Alternatively, 
in the case of multilayered heterostructures, Tapfer & 
Ploog (1989) have shown that the difference between 
the RC resulting from a three-layer heterostructure and 
the one from a structure with identical outer layers 
but without a separator is given by the reflectivity of 
these layers modulated by two sinusoidal functions, 
which depend on the total and separator thicknesses, 
respectively. The calculations shown in Fig. 2 are in 
agreement with this analysis. 

When the thickness of the separator layer is not equal 
to an integer number of spacings d, i.e. t =nd  + Ad, 
taking again the incidence angle 0 = On as an example, 
the two outer crystalline layers will be out of phase 
provided that Ad differs from multiples of d/m. In this 
case, an additional phase term proportional to Ad/m is 
present in (5), giving rise tO a shift of the main diffraction 
peak. This leads to the possibility of detecting, from 
the shifts of the Bragg peak, variations of separator 
thickness of the order of some fraction of d/m, as already 
outlined by Holloway (1990). The situation is shown in 

Fig. 3, which reports the RCs obtained on increasing the 
separator thickness of the corresponding curves in Fig. 
2 by a factor Ad/m = d/2m. This case corresponds to 
the maximum of the out-of-phase condition and the peak 
shift leads to a double peak with its central minimum at 
the Bragg angle (Figs. 3b-h). The variation of the whole 
RC on increasing t by keeping Ad/m fixed is shown 
in Figs. 3(b)-(h). These figures evidence a behaviour 
similar to that already discussed in the case of Fig. 2. 
However, it is worthwhile noting that the comparison of 
Figs. 2 and 3 evidences that the position of the maxima 
appear to be severely affected by the phase term due to 
Aa/m. 

The results shown in Figs. 2 and 3, which refer to 
ideally perfect crystalline structures, evidence that much 
of the modulations present in the RCs have intensity 
values in the range 10 - 6  tO 10 - 4  . From an experimental 
point of view, it is expected that, with an open detector 
double-crystal set-up, normalized intensities smaller than 
10 - 4  will be hardly measurable with sufficient accuracy. 
The insets in Figs. 2 and 3 show reflectivity values 
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Fig. 3. Interference patterns corresponding to the structure of Fig. 1 for different separator thicknesses t = nd + d/2m (out-of-phase condition). 
The pattern for t -- 0 is reported for comparison. The insets are enlarged views of the central spectrum regions from -100  to 100" starting 
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starting from 10 - 4  within the angular range from , 1 0 0  
to 100" of the corresponding wider spectra. From these 
insets, it is evident that the possibility of experimentally 
detecting variations of the separator thickness from the 
RCs is limited to at least several tens of d, taking also 
into account that the background due to diffuse scattering 
will further contribute to obscure the interference effects. 
Hence, in the case for instance of t = nd (Fig. 2), the 
RC of a structure with n equal to several tens of d will 
be hardly distinguishable from that of the perfect crystal 
with Pl + P2 planes. 

In a previous study, Holloway (1990), on the ba- 
sis of a similar kinematical analysis of a three-layer 
heterostructure, claims that, for a layer separation of 
an integer number of interplanar spacings, the in-phase 
condition is met, in which case the reflectivity of a 
lattice of Pl + P2 planes is recovered, irrespective of 
the distribution of planes between the" two diffracting 
regions. It should be clear, from our analysis, that 
this claim is formally incorrect, corresponding to the 
approximation in (5) of t negligible compared with 
the thickness (Pl + P2) d. The same conclusion was 
drawn by Milita & Servidori (1995), who demonstrated 
by semikinematical calculations that interference does 
indeed occur for t = nd/m. 

Recently, Holloway (1990), Tanner (1993) and Milita 
& Servidori (1995) stated that cycling of the whole 
004 symmetric RC of a (001)-oriented sample occurs 
when the separator thickness increases by integers of 
d/4, regardless of the fact that the in-phase condition 
is satisfied. The present analysis evidences that this 
conclusion corresponds to the further approximation 
0 _~ 08 in (6). 

In summary, very small separator thickness and in- 
cidence angle not far from 08 are the conditions for 
which the analyses reported by the other authors are 
correct. The interest in a more general analysis should 
be evident if one considers that the thickness threshold 
beyond which the effects of the separating layer becomes 
appreciable reduces considerably if an analyser crystal 
is added in front of the detector (triple-crystal set-up). In 
this case, in fact, relative intensities in the range 10 -6 
can reliably be measured. 

discrete set of layers parallel to the surface. Each layer is 
characterized by uniform strain perpendicular to the sur- 
face (e±) and uniform value of the static Debye-Waller 
factor [exp(-LH)]. Here, e± = (d_t_- d) /d  and, in 
the approximation of a spherically symmetric Gaussian 
distribution of mean square atomic displacements (w 2) 
from the lattice sites, Ln = 8[Trsin(Os)/A]2(w2). The 
Debye-Waller factor lowers the structure factor of the 
corresponding layer with respect to the value for the 
perfect crystal. 

To calculate the interference pattern of an implanted 
Si crystal by the previous kinematical formalism, (2) 
and (5) must be extended to the general case of a large 
number of crystalline layers of different thicknesses, lat- 
tice spacings and reflected amplitudes q. This extension 
is straightforward by recalling the dependence of c~(0) 
on the distance A1A2 shown in Fig. 1 and leads to the 
following equation: 

N N sin(PitSi/2 ) sin(pjrj/2) 
R(O) = Z Z qiqj sin(t~i/2) sin(rj/2) 

i = i j = l  

× cos[(47r//~)aijsin(O)], (7) 

where qi, j are real quantities, N is the number of crys- 
talline layers and Aij is the distance between the mid- 
points of the layers numbered i and j (Fig. 4). For N = 
2, qi = qj and 6i = 6j, and (7) reduces to equations 
(2) to (5). Since each layer has its own structure factor 
in qi, j, (7) Can be used not only for implanted silicon 
but also for any multilayered sequence of whichever 
material. Moreover, separating non-diffracting layers of 
any thickness can be included. 

In the case of a deformed crystal, the simple de- 
scription of the interference phenomena between d- 
spaced crystalline layers given in §2.1 is no longer 
adequate. In general, each layer, characterized by a spac- 
ing d± ~ d will also contribute to the total reflectivity 
with its own Bragg peak, with intensity dependent on 
the layer thickness. However, interference phenomena 
are expected whenever the spacings of layers i and j are 
very close to each other. These phenomena are enhanced 

2.2. Deformed crystal 

This section will address the analysis of samples 
with buried amorphous (a) layers produced by ion 
implantation. The reason an ion-implanted sample can 
be described as a multilayered material is the existence 
of a depth-dependent damage and strain distribution, as 
revealed by simulation procedures of calculated kinemat- 
ical (Speriosu, 1981), semikinematical (Kyutt, Petrashen 
& Sorokin, 1980) or dynamical (Wie, Tombrello & 
Vreeland, 1986) RCs to experimental data. These pro- 
cedures are based on the so-called layer approximation, 
in which the surface deformed region is divided into a 

f -t 2 

AI3 AI4 A23 A24 t I 

.... 'k . . . .  ~ - - - 3 

. . . . . . . . .  '~ 

Fig. 4. Sequence of crystalline layers of different d spacings including a 
non-diffracting separator of thickness t. A 0 are the distances between 
the mid-points of the crystalline layer thicknesses. 
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on increasing the thickness of the interfering layers as 
well as when the further condition Pi ~- Pj is met. 

It is to be underlined that the present kinemati- 
cal theory, unlike previously reported kinematical (or 
semikinematical) models (Kyutt, Petrashen & Sorokin, 
1980; Speriosu, 1981; Wie & Kim, 1991), has led to a 
simple analytical expression for the intensity instead of 
the amplitude. This aspect as well as the more general 
character of this approach offer the advantages: (i) to 
treat embedded non-diffracting layers of any thickness 
in an extended angular range; (ii) to easily expand 
(7) into the relevant terms for the experimental in- 
terference pattern of a complex multilayered structure, 
as will be shown in the following; and (iii) to use 
interplanar spacings and not approximated expressions 
of strain with respect to the substrate. However, we 
are well aware that considering all the layers (substrate 
included) as kinematically diffracting materials implies 
some discrepancies with respect to the experimental 
RCs. These difficulties cannot be fully overcome by 
combining kinematical diffraction from the layers and 
dynamical diffraction from the Substrate (Speriosu, 1981; 
Wie & Kim, 1991) but only by resorting to dynamical 
theory for all the structure. 

3. Comparison between kinematical 
calculations and experimental results 
obtained with the dynamical model 

3.1. Experiment and rocking-curve best fit 

(001)-oriented silicon single crystals were implanted 
at room temperature with doses of (i) 1 × 1015 Si + cm -2 
at 180keV; (ii) 2.5 x 1014 As + cm -2  at 800keV; (iii) 
1.5 × 1015 Si + cm -2 at 1.5 MeV. These conditions en- 
sure the formation of buried o~ layers. 

The X-ray measurements were made with a 
double-crystal diffractometer arranged in parallel 
(non-dispersive) Bragg-Bragg (n, - n )  geometry with an 
open window detector. Cu KCel radiation was used from 
a conventional sealed tube. The collimator was a silicon 
single crystal asymmetrically cut for grazing-incidence 
004 reflection, giving a probe beam on the sample 
with a divergence in the scattering plane as low as 
about 2 ~trad. This value is ten times smaller than the 
intrinsic width of the symmetric 004 RC of an infinitely 
thick silicon crystal and therefore enables convolution 
to be neglected when minimization routines are used 
to best fit the experimental X-ray intensity profiles. 
Hence, the calculated RC of the sample was obtained 
by simply averaging its cr- and 7r-polarization profiles 
over the weights of the cr and 7r integrated intensities 
from the collimator. The calculated weights for cr and 
7r integrated intensities at the exit from the collimator 
are w~ - 0.8049 and w~ = 0.1951. 

The RC best fits were made by using the dynamical 
formalism proposed by Wie et al. (1986) for a laminar 
structure of the sample. The initial damage distribution 

was tailored on the basis of the implant parameters by 
using a model for which the strain values in the laminae 
are to some extent constrained to follow a physically 
plausible depth profile. This precaution is necessary to 
strongly reduce the probability that unreasonable saw- 
toothed profiles are obtained when the lamina strains 
are free to vary independently of one another. This start- 
ing profile was then optimized automatically by means 
of a simplex-type routine (Press, Teukolsky, Vetterling 
& Flannery, 1992), which minimizes the differences 
between experimental (ifxp) and calculated (li calc) inten- 
sities. The criterion 

k 
X 2 = ( l /k)  ~ [log(lfa'c/I~xp)]2 

i = 1  

was used, where k is the number of experimental points. 
The diffuse scattered intensity, unavoidably collected in 
the absence of a crystal analyser between sample and 
detector, was taken into account by a Lorentzian-type 
distribution, following the method previously described 
(Servidori & Cembali, 1988). 

3.2, Results and discussion 

Figs. 5, 6 and 7 show the 004 RC best fits and the 
corresponding e_L and LH profiles for the three implanted 
samples. In Fig. 5(b), error bars in the e± and LH 
profiles are reported to represent the accuracy of the 
depth distribution of these quantities. The method used 
to evaluate the bars was a Monte Carlo error analysis 
very similar to that applied by Ellis & Freeman (1995) 
to extended X-ray fine-structure data. 

The positive values of e± indicate a strong effect 
of the interstitial-type defects produced by the implant. 
These defects also displace the Si atoms from the ideal 
sites in the surrounding regions of the matrix (Ln > 0). 
The buried a layers are easily recognized by the dip 
in the strain profile and by the strong value of LH. 
In a previous paper (Milita & Servidori, 1995), it was 
shown that lamina thickness (to) and strain (e±), the 
most important input parameters in computing RCs, 
should be handled by the calculation code in different 
ways according to whether they refer to a crystalline 
or an o~ lamina. For a crystalline lamina, the effective 
thickness for RC calculation is t -- to(1 + e±), where 
to -- nd/4  is the thickness in the absence of deformation 
and toe± = (nzad/d)d/4 is the strain-induced correction 
to to. For n large, this correction can be greater than d/4  
and can be written in the general case as 

toe_t_ = (1 + x)d/4,  

where l is an integer (0, 1, 2 . . . .  ) and 0 < x < 1 (for 
l = x -- 0 the situation of the perfect lamina is obtained). 
In the crystalline case, different RCs are obtained for 
different l values. 
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Similarly, in the case of an embedded o~ lamina 
produced by ion implantation, an expansion of the 
implanted crystal (l + x ) d / 4  can be experimentally 
measured by mechanical devices, such as alpha step or 
cross-sectional transmission electron microscopy. How- 
ever, in the experimental RCs, the relationship with the 
number of crystal planes pre-existing the amorphization 
process is obviously completely lost and the diffraction 
pattern will depend on the spacing of the interfering 
layers and the actual separator thickness t as shown in 
(7). Hence, for embedded c~ laminae, one has to consider 
t = to,~(1 + e_L,~), with to~ = (n + l )d /4  = n 'd /4  and 
the strain-induced correction to to~ as to~e_L~ = xd/4 .  It 
is to be emphasized that the condition e_L~ -- 0, being 
related to the spacing d of the substrate, does not imply 
a lattice phase matching of the deformed layers external 
to the separator. In fact, these layers have spacings d_L 
different from one another and from d, so that one should 
speak merely of a rigid outward translation due to the 
implanted layer equal to a multiple of d/4 .  

The thicknesses to~ = n 'd /4  and the strains e_L~ = 
x / n  t are the quantities obtained by best fit for the o~ 
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Fig. 5. (a) Exper imental  and best-fitted RCs and (b) strain and static 
disorder profiles for the sample implanted with 180 keV Si + ions. In 
(b), the bars indicate the estimated errors in the values of thickness, 
strain and static disorder. A0 is the deviation from the Bragg angle 
of the substrate corrected for refraction. 

layers and are evident in the figures. It is interesting to 
note that in the case of silicon implanted with Si + ions 
at 180 keV and 1.5 MeV, the value of e_L~ is essentially 
zero (see Figs. 5b and 7b) corresponding to a rigid 
translation of a multiple of d/4 .  As for LH, values often 
higher than 100 were obtained by best fit. However, the 
value LH -- 5 was reported in Figs. 5 to 7 for the sake of 
representation because it is sufficiently large to reduce 
the structure factor of the layer to such a small value as 
to make it non-diffracting. 

In general, in ion-implanted materials containing em- 
bedded o~ laminae, the analysis of the interference modu- 
lations observed in the experimental RCs is very com- 
plex. In the framework of the layer approximation, this 
can be understood by saying that, owing to the presence 
of a strain distribution, several pairs of deformed layers 
can contribute to the overall interference modulation. 
However, it was shown in §2.1 that, in the simplest 
case of a thick amorphous layer between two crystals 
of d spacing and equal thickness, the angular distance 
of the interference modulations is inversely propor- 
tional to twice the separator thickness. Therefore, in 
the experimental situation, interference fringes with a 
spacing inversely proportional to approximately twice 
the amorphous layer thickness will be expected when- 
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Fig. 6. (a) Experimental and best-fitted RCs and (b) strain and static 
disorder profiles for the sample implanted with 800 keV As + ions. 
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ever the interference term due to the three-layer structure 
composed of the amorphous and the two adjacent crys- 
talline layers is the main contribution to the reflectivity 
modulations. This is the case for the RCs shown in 
Figs. 5(a) and 7(a). In fact, from the average fringe 
spacings of 55 and 45" deduced from these figures, 
respectively, calculations of the interference maxima 
positions, based on (5), give separator thicknesses of 
350 and 430 nm, respectively, in qualitative agreement 
with those of the amorphous layers shown in Figs. 
5(b) and 7(b). On the contrary, for the RC shown in 
Fig. 6(a), the average interference fringe spacing of 
35" corresponds to a separator thickness of 500nm, 
in striking contrast with that of the amorphous layer 
shown in Fig. 6(b). In this case, the corresponding 
strain distribution shown in Fig. 6(b) evidences very 
different spacings as well as high strain values of the 
crystalline layers adjacent to the amorphous lamina, thus 
suggesting that interference modulations arising from 
this structure are negligible in the angular range shown 
in Fig. 6(a). These qualitative observations are confirmed 
by an analysis of the main interference terms responsible 
for the observed interference modulations, which, on the 
basis of kinematical [(7)] or  dynamical (Wie et al., 1986) 
calculations, allows one to locate the corresponding 
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Fig.  7. (a) E x p e r i m e n t a l  and best - f i t ted RCs  and (b) strain and stat ic 
d isorder  pro f i les  fo r  the sample  imp lan ted  w i t h  1.5 M e V  Si + ions. 

interfering layers. These layers are marked by arrows 
in Figs. 5(b), 6(b) and 7(b). From this analysis, as noted 
above, it is apparent that the RCs shown in Figs. 5 to 7 
are typical of different interference phenomena among 
the deformed layers of the implanted crystals. In Fig. 
6(b), it is shown that, unlike the case of Figs. 5(b) and 
7(b), the strongly interfering layers are located at the 
surface and in the tail of the strain distribution. 

Figs. 8 to 10 show a comparison of the RCs obtained 
for the three samples with a dynamical model with those 
calculated by the kinematical approach. For comparison, 
the data of each layer in Figs. 5 to 7 were introduced in 
(7), i.e. thickness of the crystalline layers as integers 
of d_L/4 with d_L/4 > d/4, as deduced from e_L, 
thickness of the a layers and lamina structure factors as 
modified by the static Debye-Waller factors exp(-Ln) .  
Moreover, a perfect silicon layer of thickness 5 × 105d/4 
was added to the bottom of the sequence to simulate 
the presence of the substrate and the distribution of 
the diffuse scattering under the diffracted intensity was 
removed. The kinematical calculation combined the o- 
and 7r-polarization components according to the weights 
w~, and w. reported in §3.1. From Figs. 8 to 10, where 
the obvious substrate peak intensity greater than 1 for 
the kinematical case is not shown, it can be observed 
that, apart from an intensity overestimate in the positive 
angular side of the RC and the narrow fringe spacing due 
to the thick substrate, (7) is able to describe correctly 
the interference phenomena occurring in the multilayer 
structure. All interference fringes and their modulations 
are well reproduced. The intensity depletion at A0 > 
0 results from dynamical interaction between waves 
scattered from the expanded surface layers and the thick 
perfect substrate (Afanas'ev, Koval'chuk, Lobanovich, 
Imamov, Aleksandrov & Melkonyan, 1981). 

4. Conclusions 

This paper reports a kinematical approach for the de- 
scription of symmetric Bragg-case interference phenom- 
ena occurring in multilayered structures. The formalism 
is different from those already reported in the literature 
for structures having such thin embedded crystalline 
layers that diffraction from them can be neglected. 
In fact, it can be used for any layer sequence, in- 
cluding non-diffracting materials of any thickness. Its 
more general validity is demonstrated by comparison 
with rocking curves obtained by dynamical best fit of 
experimental data relative to implanted silicon. The 
comparison shows an excellent agreement with all the 
interference features present in the experimental rocking 
curves. Finally, it is worthwhile noting that the form 
of the kinematic expression (7) appears well adapted 
to an extension of the model to double-crystal X-ray 
dispersive configurations by taking also in consideration 
the coherence depth of the X-radiation. This will be the 
subject of future work. 
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